Aspirin induces cell death by directly modulating mitochondrial voltage-dependent anion channel (VDAC)
نویسندگان
چکیده
Aspirin induces apoptotic cell death in various cancer cell lines. Here we showed that silencing of VDAC1 protected HeLa cells from aspirin-induced cell death. Compared to the wild type cells, VDAC1 knocked down cells showed lesser change of mitochondrial membrane potential (Δψm), upon aspirin treatment. Aspirin augmented ATP and ionomycin-induced mitochondrial Ca2+ uptake which was abolished in VDAC1 knocked down cells. Aspirin dissociated bound hexokinase II (HK-II) from mitochondria. Further, aspirin promoted the closure of recombinant human VDAC1, reconstituted in planar lipid bilayer. Taken together, these results imply that VDAC1 serves as a novel target for aspirin. Modulation of VDAC1 is possibly associated with the cell death and anticancer effects of aspirin.
منابع مشابه
Bcl-2 family of proteins: life-or-death switch in mitochondria.
An increase in the permeability of outer mitochondrial membrane is central to apoptotic cell death, and results in the release of several apoptogenic factors such as cytochrome c into the cytoplasm to activate downstream destructive programs. The voltage-dependent anion channel (VDAC or mitochondrial porin) plays an essential role in disrupting the mitochondrial membrane barrier and is regulate...
متن کاملElectrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c.
The Bcl-2 family of proteins, consisting of anti-apoptotic and pro-apoptotic members, regulates cell death by controlling mitochondrial membrane permeability that is crucial for apoptotic signal transduction. We have recently shown that some of these proteins, such as Bcl-x(L), Bax, and Bak, directly modulate the mitochondrial voltage-dependent anion channel (VDAC) and thus regulate apoptogenic...
متن کاملBH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death.
A change of mitochondrial membrane permeability is essential for apoptosis, leading to translocation of apoptogenic cytochrome c and apoptosis-inducing factor into the cytoplasm. We recently showed that the Bcl-2 family of proteins regulate cytochrome c release and the mitochondrial membrane potential (Deltapsi) by directly modulating the activity of the voltage-dependent anion channel (VDAC) t...
متن کاملEssential Role of Voltage-Dependent Anion Channel in Various Forms of Apoptosis in Mammalian Cells
Through direct interaction with the voltage-dependent anion channel (VDAC), proapoptotic members of the Bcl-2 family such as Bax and Bak induce apoptogenic cytochrome c release in isolated mitochondria, whereas BH3-only proteins such as Bid and Bik do not directly target the VDAC to induce cytochrome c release. To investigate the biological significance of the VDAC for apoptosis in mammalian ce...
متن کاملModulation of the voltage-dependent anion-selective channel by cytoplasmic proteins from wild type and the channel depleted cells of Saccharomyces cerevisiae.
It is well known that effective exchange of metabolites between mitochondria and the cytoplasm is essential for cell physiology. The key step of the exchange is transport across the mitochondrial outer membrane, which is supported by the voltage-dependent anion-selective channel (VDAC). Therefore, it is clear that the permeability of VDAC must be regulated to adjust its activity to the actual c...
متن کامل